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A palladium-catalyzed three-component synthesis of 3-(diarylmethylene)indolin-2-ones has been devel-
oped. A sequence of intermolecular N-arylation/intermolecular carbopalladation/C–H activation/C–C
bond formation was realized in a one-pot fashion allowing the construction of one C–N bond and two
C–C bonds by way of three distinct catalytic cycles.

� 2009 Elsevier Ltd. All rights reserved.
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Synthesis of oxindoles bearing a tetrasubstituted exocyclic dou-
ble bond at the C-3 position has recently captured attention of syn-
thetic chemists due to the utility of such bicyclic structure in the
development of new drug leads.1 In this regard, the metal-cata-
lyzed domino cyclizations of 2-iodoarylpropynamides,2 2-alkynyl-
aryl isocyanates,3 and 2-alkynyl anilines4 are notable examples.5

We have developed a palladium-catalyzed domino carbopallada-
tion/C–H functionalization process for the synthesis of 3-(diarylm-
ethylene)oxindoles (1) from arylpropynamide and aryliodide.6 Li,
Wang, and co-workers have elegantly exploited the potential of
this approach and have synthesized a variety of heteroatom-
substituted oxindoles by performing the domino transformation
under oxidative conditions.7 We have subsequently devised a
three-component variant using arylpropiolamide and two different
aryliodides as starting materials (Scheme 1, Eq. 1).8 As a continua-
tion of our interest in the synthesis of oxindoles9 and in the devel-
opment of palladium-catalyzed domino sequence,10 we report
herein a novel three-component synthesis of 1 starting from read-
ily available arylbromide (2), N-alkylpropynamide (3), and arylio-
dide (4) by a sequence of N-arylation/carbopalladation/C–H
functionalization (Scheme 1, Eq. 2).11

The N-arylation of N-alkylpropiolamide 3 is unprecedented in
the literature.12 Indeed, two competitive reactions, N-arylation
and carbopalladation, can take place when haloarene 2 and N-
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alkylpropiolamide 3 are reacted in the presence of a given palla-
dium catalyst. Our first concern was thus to find conditions to
favor the N-arylation of 3. Under reaction conditions developed
by Buchwald [Pd(dba)2 (1 mol %), Xantphos (3 mol %), Cs2CO3 in
refluxing dioxane)13, N-arylation of 3 with 4-bromoanisidine or
bromobenzene indeed furnished the expected anilide albeit in
low yield (<30%). Changing the ligands (Xphos and Binap) or
the bases (NaOAc and NaOtBu) failed to improve the reaction
outcome. However, the reaction between 3a (R = Me, Ar1 = Ph)
and more reactive 4-bromo nitrobenzene (2a) went well to af-
ford N-methyl-N-(4-nitrophenyl)-3-phenylpropiolamide 5a in
96% (structure not shown).

With these results in hand, the three-component reaction was
examined by sequential addition of two different aryliodides. How-
ever, stirring a solution of 2a and 3a in dioxane in the presence of
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Scheme 1. Palladium-catalyzed three-component synthesis of oxindoles.
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[Pd2(dba)3] (1 mol %), Xantphos (3 mol %), and Cs2CO3 at 100 �C for
15 h followed by addition of phenyl iodide in DMF14 and heating at
110 �C for 24 h failed to afford the expected oxindole 1a. A control
experiment revealed that the domino carbopalladation/CH func-
tionalization was completely inhibited in the presence of Xant-
phos. We therefore decided to undertake a survey of reaction
conditions for the whole sequence, instead of optimizing the indi-
vidual steps15 by varying the palladium source, the ligand, and the
base. The results are summarized in Table 1.

Except for XPhos, other monodentate phosphines examined
were ineffective as supporting ligands for the present N-arylation
reaction (entries 2–5). Xphos and Binap were good for the N-aryla-
tion, but were deleterious for the subsequent steps (entries 6 and
7). Dppf was found to be effective for the whole sequence affording
oxindole 1a in moderate yield (entry 8). Using Pd(OAc)2 (at higher
loading) instead of Pd2(dba)3 as a pre-catalyst improved the yield
of 1a to 41% (entry 11). Among the bases investigated, Cs2CO3

was found to be far superior to K3PO4 and KOtBu as the latter bases
failed to promote the N-arylation reaction under otherwise identi-
cal conditions (entries 11–13).

Knowing that Xantphos was a very efficient ligand for N-aryla-
tion, but inhibited the carbopalladation step, we next turned our
attention to find conditions that can deliver the palladium catalyst
active for both steps in its presence. One possibility would be to
add a ligand that could modify the properties of the active catalyst
after the first step.16 This strategy would nevertheless be difficult
to realize in our case since Xantphos is a bidentate ligand. Seques-
tering the ligand could also be an option as ligand-free catalysis is
beneficial for the second step of our sequence. Copper has recently
been used as a scavenger to recover (remove) phosphine ligands.17

However, addition of CuCl to the reaction mixture after the N-ary-
Table 1
Palladium-catalyzed three-component synthesis of oxindoles: a survey of reaction
conditionsa
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Entry [Pd] (mol %) Ligand (mol %) t1,t2 (h) Yieldb

1 Pd2(dba)3 (1) Xantphos (3) 15, 24 0%
2 Pd2(dba)3 (1) P(Cy)3 (3) 17 —c

3 Pd2(dba)3 (1) HP(t-Bu)3BF4 (3) 18 —c

4 Pd2(dba)3 (1) JohnPhos (3) 24 —c

5 Pd2(dba)3 DavePhos (3) 16 —c

6 Pd2(dba)3 (1) X-Phos 17,48 0%
7 Pd2(dba)3 (1) BINAP (3) 17, 24 0%
8 Pd2(dba)3 (1) dppf (3) 16, 24 24%
9 Pd2(dba)3 (1) dppe (3) 18 —c

10 PdCl2 (5) dppf (10) 24 —c

11 Pd(OAc)2 (5) dppf (10) 15, 10 41%
12d Pd(OAc)2 (5) dppf (10) 24 —c

13e Pd(OAc)2 (5) dppf (10) 24 —c

14 Pd2(dba)3 (2) Xantphos (3) 15, 24 26%
15 Pd(OAc)2 (5) Xantphos (3) 6, 15 48%
16 Pd(OAc)2 (5) Xantphos (1.5) 10, 17 0%

a All reactions were carried out under argon using 2a (1.0 equiv), 3a (1.0 equiv),
Pd catalyst, Cs2CO3 (3.0 equiv), and ligand in dioxane (c = 0.2 M) at 100 �C for the
indicated time (t1); then a DMF solution of iodobenzene (1.5 equiv, c = 0.3 M) was
added and the reaction mixture was heated at 110 �C (t2).

b Yield refers to chromatographically pure product.
c N-arylation was not observed.
d K3PO4 (3.0 equiv) was used as the base.
e KOtBu (3.0 equiv) was used as the base.
lation step failed to produce any cyclized product. Finally, we
found that using an excess amount of palladium relative to ligand
was an effective solution. Thus performing the reaction in the pres-
ence of 2 mol % of Pd2(dba)3 (4 mol % palladium) and 3 mol % of
Xantphos, furnished compound 1a in 26% yield (Table 1, entry 14
vs entry 1). Further improvement was observed using Pd(OAc)2

(0.05 equiv) as a pre-catalyst in the presence of Xantphos
(0.03 equiv) to afford 1a in 48% yield (entry 15). It should be noted
that further lowering the ligand to palladium ratio was detrimental
to the reaction (entry 16).

We next investigated the scope of this three-component reac-
tion under the optimized reaction conditions [Pd(OAc)2

(0.05 equiv), Xantphos (0.03 equiv), Cs2CO3 (3.0 equiv), 2 and 3 in
dioxane at 100 �C, then a DMF solution of 4, and heating at
110 �C]. Results are presented in Table 2. As N-arylating agent, var-
ious aryl bromides containing an electron-withdrawing group at
the para-position were found to be active. Indeed, cyano, ketone,
ester, and even aldehyde proved to be compatible with the reaction
conditions (entries 1–5). On the other hand, ortho or meta bromo
nitrobenzene was found to be unsuitable substrate (data not
shown). With regard to the N-alkyl phenylpropiolamides (3), both
N-methyl and N-benzyl (entry 6) derivatives participated in the
reaction. The presence of a methoxy group in the phenyl ring of
3 was also tolerated (entries 7 and 8).18

A possible reaction sequence that accounts for the formation of
oxindole is depicted in Scheme 2. Oxidative addition of haloarene
(2) to Pd(0) generated the Pd(II) species (A) which upon transmet-
allation with the amide (3) would afford intermediate (B). Reduc-
tive elimination of (B) would afford the amide (C) with
concurrent regeneration of Pd(0). Oxidative addition of second ary-
liodide to Pd(0) led to (D) that would in turn react with (C) to fur-
nish the carbopalladation product (E). The C–H activation followed
by reductive elimination from the palladacycle (F) would then af-
ford the oxindole (1) and regenerate the Pd(0) species.

In contrast to our previous synthesis,6,8 all oxindoles were pro-
duced as a mixture of E and Z isomers. This was surprising as car-
bopalladation of alkyne with ArPdX is known to be syn selective.
Control experiment indicated that compound (E)-1h that was pre-
pared independently6 did not undergo isomerization upon stand-
ing (Scheme 3).20 In addition, phosphine-induced isomerization
by 1,4 addition-elimination sequence19 was excluded since heating
a DMF solution of (E)-1h in the presence of Xantphos for several
hours did not induce isomerization. Consequently, we reasoned
that both isomers were produced during the reaction. We hypoth-
esized that an isomerization occurred after the carbopalladation
step, which is believed to deliver cis adduct E (Scheme 2). When
C–H activation process is fast, the stereochemical integrity of this
adduct is transferred to the product as it was observed previously.
However, when this step is slow as in the present case due to the
presence of Xantphos, isomerization could become competitive. A
plausible cis–trans isomerization mechanism is illustrated in
Scheme 4. Both anionic (7) and cationic (8) palladium species have
been postulated in the literature to explain the cis–trans isomeri-
zation.21 In our case, we assumed that isomerization via cationic
palladium intermediate (8) was more feasible as it involves a neg-
ative charge that can be stabilized by the neighboring nitro group
(Scheme 4).

In summary, we have developed a three-component synthesis
of unsymmetrically substituted 3-(diarylmethylene)indolinones.
The overall reaction involves a sequence of N-arylation reaction/
carbopalladation/ C–H activation/C–C bond formation and it is cat-
alyzed by a single Pd catalytic system. Finding a suitable palladium
to ligand ratio has been determinant to the success of the present
transformation.



Table 2
Scope of the palladium-catalyzed three-component synthesis of 3-(diarylmethylene)oxindolesa

Entry Amide Ar1 Ar2 Product Yield %b

1
MeHN

O

3a

NO2

Br

2a

NO2

I 4b

N
Me

O
O2N

NO2

1b, E/Z = 1:3 64

2 3a

CN

Br

2b 4b

N
Me

O
NC

NO2

1c, E/Z = 1:3 63

3 3a

Br

O Ph

2c 4b

N
Me

O

NO2

Ph

O
1d, E/Z = 1:1 56

4 3a

CO2Me

Br

2d 4b

N
Me

O
MeO2C

NO2

1e, E/Z = 1:2 67

5 3a

CHO

Br

2e 4b

N
Me

O
OHC

NO2

1f, E/Z = 1:4 35

6 BnHN

O

3b 2a 4b

N
Bn

O

NO2

O2N 1g, E/Z = 1:4 53

7
MeHN

O

OMe

3c 2a 4b

N
Me

O
O2N

OMe

NO2

1h, E/Z = 1:3 33

8 3c 2a

OMe

I

4c

N
Me

O
O2N

MeO

OMe
1i 32

a General conditions: 3 (1.0 equiv), 2 (1.0 equiv), Pd(OAc)2 (5 mol %), Xantphos (3 mol %), and Cs2CO3 (3.0 equiv) in dioxane (c = 0.2 M) at 100 �C, then a solution of 4 in DMF
(1.5 equiv, c = 0.3 M) was added and the reaction mixture was heated at 110 �C.

b Yield refers to chromatographically pure product.
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